STATE OF ILLINOIS ILLINOIS COMMERCE COMMISSION

AMEREN TRANSMISSION COMPANY OF ILLINOIS)	
)	
Petition for a Certificate of Public Convenience and)	
Necessity, pursuant to Section 8-406.1 of the Illinois)	
Public Utilities Act, and an Order pursuant to Section 8-)	Docket No. 12-0598
503 of the Public Utilities Act, to Construct, Operate and)	
Maintain a New High Voltage Electric Service Line and)	
Related Facilities in the Counties of Adams, Brown,)	
Cass, Champaign, Christian, Clark, Coles, Edgar, Fulton,)	
Macon, Montgomery, Morgan, Moultrie, Pike,)	
Sangamon, Schuyler, Scott and Shelby, Illinois.)	

TESTIMONY OF DAVID W. BUSH ON BEHALF OF STOP THE POWER LINES COALITION

Direct Testimony Of David W. Bush

On Behalf Of

Stop The Power Lines Coalition

1		
2 3	I. <u>INTRODUCTION AND WITNESS QUALIFICATIONS</u> :	
4 5	Q: Please state your name, address, and relationship to Intervenor organization.	
6	A: My name is David W. Bush, and my address is 105 Orchard Way, Camillus, NY 13031.	
7	I am Professional Engineer and a Professional Land Surveyor, and I have been acting as a	
8	consultant to the STOP THE POWER LINES COALITION (the "Coalition"),	
9	which intervened in this proceeding, in December 2012.	
10	Q: Please summarize your educational background and professional experience.	
11	A: <u>See</u> a copy of my resume which is attached as STPL Exhibit 4.1 to this testimony.	
12		
13	II. PURPOSE AND SCOPE:	
14	Q: What is the purpose of your testimony?	
15	A: I will be discussing the problems and issues surrounding that portion of the segment of	
16	the Primary Route proposed by ATXI, running from Kansas to Sugar Creek, to be erected along	
17	the Southern boundary of the quarry site of QUALITY LIME COMPANY.	
18 19	III. EXPLANATION OF PROPOSED STEEL POLE CONSTRUCTION:	
20	Q: Do you have any objections to the segment of the Primary Route proposed by ATXI	ſ,

21

running from Kansas to Sugar Creek?

22	A: Yes. As depicted on ATXI Exhibit 4.2 (Part 86 of 100, page 1 of 2 and page 2 of 2)
23	(and, also, on STPL Exhibits 1.4 & 1.5), the proposed ATXI Primary Route runs along the
24	Southern boundary of the quarry site of QUALITY LIME COMPANY, located Southeast of
25	Marshall, Illinois.
26	Firstly, the continual presence of lime dust (arising from the operations of the stone
27	quarry) will be and become a problem to the 345kV transmission line and its components; and
28	secondly, the necessary blasting attendant to the operations of the stone quarry will also be and
29	become a problem to the 345kV transmission line and its components.
30	Q: Are you offering any exhibits in support of or to aid your testimony?
31	A: Only one. [STPL Exhibit 4.2] is a notated copy of ATXI Exhibit 7.1. The notations
32	thereon are defined as follows:
33	Point (A) represents the fasteners for the two wires for each phase of the transmission
34	line;
35	Point (B) is the insulator for each phase of the transmission line; and
36	Point (C) represents the two (2) static wires (to provide lightning and fault current
37	protection).
38 39	IV. PRESENCE OF LIME DUST:
40	Q: Would you explain the problem with the continual presence of lime dust?
41	A: The efficiency of an electrical power supply system is based mainly upon the continuity
42	of service, avoiding faults that pose economic risks and potential losses for the companies and
43	their customers. To maintain this continuity, one of the main problems is the effect produced by
44	contamination in the insulators of electric lines.

45		The insulator begins to fail when the particles that exist in the air settle on the surface of
46	the in	sulator and combine with the humidity of fog, rain or dew. The mixture of particles, plus
47	the hu	amidity form a layer that can become a conductor and allowing passing electric current to
48	"short	t circuit." Unless there is adequate maintenance, and depending upon the chemistry of the
49	partic	le, the electrical power can be affected by a possible flashover in the insulator.
50	Q:	How does lime dust interfere with transmission of power in an electrical
51	trans	mission line?
52	A:	Lime dust becomes a potential source of interference to high voltage transmission lines,
53	when	the lime dust becomes air-borne, which is caused by:
54		(a) Wind blowing across the quarry site; OR
55		(b) Equipment moving around the quarry site; OR
56		(c) Blasting; OR
57		(d) Moving aggregate from one part of the quarry to the stone crusher; OR
58		(e) Bulldozing / stock piling aggregate on the quarry site; OR
59		(f) Product departure by large truck.
60	Q:	What happens when the lime dust becomes air-borne?
61	A:	After becoming air-borne, the lime dust collects on transmission line insulators (Point (B)
62	on ST	PL DWB Exhibit 4.2) and hardware. Over time, the accumulating lime dust compromises
63	the in	sulation capability of the insulators and causes a "phase to ground fault," which means a
64	short	circuit from the phase conductors (Point (A) on STPL Exhibit 4.2) over the insulator (Point
65	(B)) tl	hrough the cross arm holding the insulator and conductors, and down the steel pole to the
66	"grou	nd."
67	Q:	What is the significance of this "phase to ground fault"?

design for one such failure. Most systems cannot take a second contingency failure, without

shedding capacity or suffering grid component damage.

71

72

- Q: What can be the magnitude of a "phase to ground fault"?
- A: Depending upon the amount of accumulated lime dust, the failure can be simply a
- "short" circuit of power from the conductor(s), across the support arm and down the pole to the
- 75 ground (being the earth). It could include mechanical failure of an insulator, causing a
- detachment of the conductor(s) from the crossarm creating a conductor to ground contact or a
- 77 phase to ground fault. Of higher concern, a low conductor to ground clearance could create a
- severe safety concern.
- 79 In the latter case, we might be talking about a loose 345kV line, until it grounds out.
- 80 Q: How is the accumulated lime dust to be removed from the insulators?
- A: The remedy to lime accumulation is cleaning and washing the insulators. Spray washing
- 82 is not effective. Neither is rain action.
- Mechanical washing of some form is required.
- 84 Q: How about any possible effects on the hardware?
- 85 A: Accumulated lime will collect water, causing longterm hardware corrosion leading to
- 86 mechanical failure. In this instance, we are not just talking about a power conductor problem; it
- is a static wire (Point (C) on STPL Exhibit 4.2) problem as well. This failure could be critical, in
- 88 that it might affect optical ground wire which would control key system protection
- 89 communication from one station to another. Also, like power conductors, it could result in
- 90 detachment of the static or OPGFW from the support arm. If that occurs, the geometry as shown

91	in ATXI 7.1 would allow a gravity drop not stopped by the power conductor support arm. Like
92	the phase drop, this has the high probability of creating a severe safety with quarry equipment or
93	agricultural equipment in the area dragging it to contact the phase conductors.
94	Q: To alleviate the lime dust problem, are you suggesting that QUALITY LIME
95	COMPANY should discontinue its quarry operations?
96	A: No. The stone quarry is an existing, on-going business, which supplies aggregate,
97	crushed stone, lime, and other products, for area farmers and other businesses. The lime dust
98	attendant to quarry operations is only a factor for the proposed 345kV transmission line.
99	Q: Under 220 ILCS 5/8-406.1, the Commission shall grant a certificate of public
100	convenience and necessity, if it finds that the Project, among other things, is the "least-cost
101	means" of satisfying the stated objectives. Will the continual presence of lime dust be a
102	persistent maintenance problem if the proposed ATXI Primary Route is adopted?
103	A: Simply stated. Yes.
104	Running the Primary Route on the Southern boundary of an active stone quarry is and
105	will be persistent maintenance problem. For this portion of the Kansas to Sugar Creek segment,
106	the continual presence of lime dust will increase the cost of line operations and maintenance, and
107	it will substantially shorten the useful life of the insulators and hardware, requiring more
108	frequent repair or replacement.
109 110 111	V. <u>BLASTING PROBLEM</u> :
111	Q: Would you explain the problem with the necessary blasting attendant to the
113	operations of the stone quarry?
114	A: Blasting causes vibration in overhead system components – both the conductor and the

static wire. Excessive vibration (which comes from blasting at the stone quarry) leads to

115

116	"grooving" (the back and forth motion wearing on the conductors) and can lead to a mechanical
117	failure resulting in a "phase to ground fault," due to a dropped conductor or static wire.
118	Also, in this case, it could cause a failure in the optical ground wire, resulting in a
119	communications problems, which cause the proposed circuit to be taken out of service.
120	Blasting can also cause a "direct hit" from shot rock. Consequently, it could cause a
121	phase drop or static wire drop, resulting in a "phase to ground fault," being a first contingency
122	event.
123	Q: Under 220 ILCS 5/8-406.1, the Commission shall grant a certificate of public
124	convenience and necessity, if it finds that the Project, among other things, is the "least-cost
125	means" of satisfying the stated objectives. Will the blasting at the stone quarry be a
126	persistent maintenance problem if the proposed ATXI Primary Route is adopted?
127	A: Simply stated. Yes.
128	As previously stated, running the Primary Route on the Southern boundary of an active
129	stone quarry is and will be persistent maintenance problem. For this portion of the Kansas to
130	Sugar Creek segment, the necessary blasting attendant to the operations of the stone quarry will
131	increase the cost of line operations and maintenance, requiring more frequent repair or
132	replacement.
133 134	VI. <u>CONCLUSION</u> :
135	Q: Does this conclude your direct testimony?
136	A: Yes, it does. Thank you for your attention.